Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Nat Commun ; 15(1): 49, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169460

RESUMO

Repurposing the intrinsic properties of natural enzymes can offer a viable solution to current synthetic challenges through the development of novel biocatalytic processes. Although amino acid racemases are ubiquitous in living organisms, an amine racemase (AR) has not yet been discovered despite its synthetic potential for producing chiral amines. Here, we report the creation of an AR based on the serendipitous discovery that amine transaminases (ATAs) can perform stereoinversion of 2-aminobutane. Kinetic modeling revealed that the unexpected off-pathway activity results from stereochemically promiscuous futile cycles due to incomplete stereoselectivity for 2-aminobutane. This finding motivated us to engineer an S-selective ATA through in silico alanine scanning and empirical combinatorial mutations, creating an AR with broad substrate specificity. The resulting AR, carrying double point mutations, enables the racemization of both enantiomers of diverse chiral amines in the presence of a cognate ketone. This strategy may be generally applicable to a wide range of transaminases, paving the way for the development of new-to-nature racemases.


Assuntos
Aminas , Racemases e Epimerases , Aminas/química , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Ciclização de Substratos , Biocatálise , Transaminases/metabolismo , Especificidade por Substrato , Estereoisomerismo
2.
Biosystems ; 235: 105088, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000545

RESUMO

Folate (vitamin B9) plays a central role in one-carbon metabolism in prokaryotes and eukaryotes. This pathway mediates the transfer of one-carbon units, playing a crucial role in nucleotide synthesis, methylation, and amino acid homeostasis. The folinic acid futile cycle adds a layer of intrigue to this pathway, due to its associations with metabolism, cell growth, and dormancy. It also introduces additional complexity to folate metabolism. A logical way to deal with such complexity is to examine it by using mathematical modelling. This work describes the construction and analysis of a model of folate metabolism, which includes the folinic acid futile cycle. This model was tested under three in silico growth conditions. Model simulations revealed: 1) the folate cycle behaved as a stable biochemical system in three growth states (slow, standard, and rapid); 2) the initial concentration of serine had the greatest impact on metabolite concentrations; 3) 5-formyltetrahydrofolate cyclo-ligase (5-FCL) activity had a significant impact on the levels of the 7 products that carry the one-carbon donated from folates, and the redox couple NADP/NADPH; this was particularly evident in the rapid growth state; 4) 5-FCL may be vital to the survival of the cells by maintaining low levels of homocysteine, as high levels can induce toxicity; and 5) the antifolate therapeutic trimethoprim had a greater impact on folate metabolism with higher nutrient availability. These results highlight the important role of 5-FCL in intracellular folate homeostasis and mass generation under different metabolic scenarios.


Assuntos
Escherichia coli , Ácido Fólico , Ácido Fólico/análise , Ácido Fólico/metabolismo , Leucovorina/metabolismo , Escherichia coli/metabolismo , Ciclização de Substratos , Homeostase , Modelos Teóricos , Carbono/metabolismo
3.
Arch Biochem Biophys ; 739: 109581, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36948352

RESUMO

The activation of brown fat and induction of beige adipocytes, so-called non-shivering thermogenesis, is emerging as a promising target for therapeutic intervention in obesity management. Our previous report demonstrated that ß-carotene (BC) induces beige adipocytes to increase UCP1-dependent thermogenic activity. However, the UCP1-independent thermogenic effect of BC on adipose tissues remains unexplored. In this study, we examined the effects of BC on UCP1-independent thermogenic activity with a focus on the ATP-consuming futile cycles in 3T3-L1 adipocytes. BC increased intracellular calcium levels and stimulated the expression of calcium cycling-related proteins, including sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) 2b, ryanodine receptor 2 (RyR2), voltage-dependent anion channel (VDAC), mitochondrial calcium uniporter (MCU), and Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) in 3T3-L1 white adipocytes. In addition, BC stimulated thermogenesis by activating the creatine metabolism-related thermogenic pathway. Moreover, BC activated ß-carotene oxygenase 1 (BCO1), which efficiently cleaved BC to retinal and consequently converted to its transcriptionally active form retinoic acid. These BC conversion products also exhibited thermogenic effects comparable to a similar level of BC. The mechanistic study revealed that retinal exhibited thermogenic activity independently of retinoic acid and retinoic acid-mediated thermogenesis was resulted partly from conversion of retinal. Moreover, BC activated α1-AR and UCP1-independent thermogenic effectors independently of UCP1 expression. In conclusion, the thermogenic response to BC and its conversion products in 3T3-L1 white adipocytes involves two interacting pathways, one mediated via ß3-adrenergic receptors (ß3-AR) and cyclic adenosine monophosphate (cAMP) and the other via α1-AR and increases in cytosolic Ca2+ levels activated by calcium regulatory proteins.


Assuntos
Adipócitos Brancos , beta Caroteno , Camundongos , Animais , Adipócitos Brancos/metabolismo , beta Caroteno/farmacologia , beta Caroteno/metabolismo , Cálcio/metabolismo , Ciclização de Substratos , Células 3T3-L1 , Tecido Adiposo Marrom/metabolismo , Trifosfato de Adenosina/metabolismo , Termogênese/fisiologia , Tretinoína/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-36535597

RESUMO

Total absence of adipose tissue (lipoatrophy) is associated with the development of severe metabolic disorders including hepatomegaly and fatty liver. Here, we sought to investigate the impact of severe lipoatrophy induced by deletion of peroxisome proliferator-activated receptor gamma (PPARγ) exclusively in adipocytes on lipid metabolism in mice. Untargeted lipidomics of plasma, gastrocnemius and liver uncovered a systemic depletion of the essential linoleic (LA) and α-linolenic (ALA) fatty acids from several lipid classes (storage lipids, glycerophospholipids, free fatty acids) in lipoatrophic mice. Our data revealed that such essential fatty acid depletion was linked to increased: 1) capacity for liver mitochondrial fatty acid ß-oxidation (FAO), 2) citrate synthase activity and coenzyme Q content in the liver, 3) whole-body oxygen consumption and reduced respiratory exchange rate in the dark period, and 4) de novo lipogenesis and carbon flux in the TCA cycle. The key role of de novo lipogenesis in hepatic steatosis was evidenced by an accumulation of stearic, oleic, sapienic and mead acids in liver. Our results thus indicate that the simultaneous activation of the antagonic processes FAO and de novo lipogenesis in liver may create a futile metabolic cycle leading to a preferential depletion of LA and ALA. Noteworthy, this previously unrecognized cycle may also explain the increased energy expenditure displayed by lipoatrophic mice, adding a new piece to the metabolic regulation puzzle in lipoatrophies.


Assuntos
Fígado Gorduroso , Lipogênese , Animais , Camundongos , Ciclização de Substratos , Metabolismo dos Lipídeos , Fígado Gorduroso/metabolismo , Ácido alfa-Linolênico/metabolismo
5.
New Phytol ; 236(3): 1128-1139, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35851483

RESUMO

Storage lipids (mostly triacylglycerols, TAGs) serve as an important energy and carbon reserve in plants, and hyperaccumulation of TAG in vegetative tissues can have negative effects on plant growth. Purple acid phosphatase2 (PAP2) was previously shown to affect carbon metabolism and boost plant growth. However, the effects of PAP2 on lipid metabolism remain unknown. Here, we demonstrated that PAP2 can stimulate a futile cycle of fatty acid (FA) synthesis and degradation, and mitigate negative growth effects associated with high accumulation of TAG in vegetative tissues. Constitutive expression of PAP2 in Arabidopsis thaliana enhanced both lipid synthesis and degradation in leaves and led to a substantial increase in seed oil yield. Suppressing lipid degradation in a PAP2-overexpressing line by disrupting sugar-dependent1 (SDP1), a predominant TAG lipase, significantly elevated vegetative TAG content and improved plant growth. Diverting FAs from membrane lipids to TAGs in PAP2-overexpressing plants by constitutively expressing phospholipid:diacylglycerol acyltransferase1 (PDAT1) greatly increased TAG content in vegetative tissues without compromising biomass yield. These results highlight the potential of combining PAP2 with TAG-promoting factors to enhance carbon assimilation, FA synthesis and allocation to TAGs for optimized plant growth and storage lipid accumulation in vegetative tissues.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Hidrolases de Éster Carboxílico , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipase/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Ciclização de Substratos , Açúcares/metabolismo , Fatores de Transcrição , Triglicerídeos/metabolismo
6.
J Biochem ; 172(4): 197-203, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35791624

RESUMO

Brown and beige adipocytes produce heat and control systemic energy via non-shivering thermogenesis. Historically, thermogenesis in brown and beige adipocytes was thought to be exclusively through a mitochondria-localized protein, uncoupling protein 1 (UCP1). However, recent studies identified UCP1-independent thermogenic mechanisms in adipocytes. Importantly, UCP1-independent pathways significantly contribute to systemic energy and glucose homeostasis. The finding of UCP1-independent mechanisms provided new opportunities to target the pathways in vivo. In this review, we discuss the current understandings of thermogenic mechanisms in adipocytes with a focus on Ca2+ futile cycling.


Assuntos
Cálcio , Termogênese , Tecido Adiposo/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Ciclização de Substratos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
7.
Methods Mol Biol ; 2448: 141-153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167096

RESUMO

Thermogenic adipose tissue plays a vital function in regulating whole-body energy expenditure and nutrient homeostasis due to its capacity to dissipate chemical energy as heat, in a process called non-shivering thermogenesis. A reduction of creatine levels in adipocytes impairs thermogenic capacity and promotes diet-induced obesityKazak et al, Cell 163, 643-55, 2015; Kazak et al, Cell Metab 26, 660-671.e3, 2017; Kazak et al, Nat Metab 1, 360-370, 2019). Mechanistically, thermogenic respiration can be promoted by the liberation of an excess quantity of ADP that is dependent on addition of creatine. A model of a two-enzyme system, which we term the Futile Creatine Cycle, has been posited to support this thermogenic action of creatine. Futile creatine cycling can be monitored in purified mitochondrial preparations wherein creatine-dependent liberation of ADP is monitored through the measurement of oxygen consumption under ADP-limiting conditions. The current model proposes that, in thermogenic fat cells, mitochondria-targeted creatine kinase B (CKB) uses mitochondrial-derived ATP to phosphorylate creatine (Rahbani JF, Nature 590, 480-485, 2021). The creatine kinase reaction generates phosphocreatine and ADP, and ADP stimulates respiration. Next, a pool of mitochondrial phosphocreatine is directly hydrolyzed by a phosphatase, to regenerate creatine. The liberated creatine can then engage mitochondrial CKB to trigger another round of this cycle to support ADP-dependent respiration. In this model, the coordinated action of creatine phosphorylation and phosphocreatine hydrolysis triggers a futile cycle that produces a molar excess of mitochondrial ADP to promote thermogenic respiration (Rahbani JF, Nature 590, 480-485, 2021; Kazak and Cohen, Nat Rev Endocrinol 16, 421-436, 2020). Here, we provide a detailed method to perform respiratory measurements on isolated mitochondria and calculate the stoichiometry of creatine-dependent ADP liberation. This method provides a direct measure of the futile creatine cycle.


Assuntos
Creatina , Termogênese , Creatina/metabolismo , Metabolismo Energético , Fosfocreatina , Ciclização de Substratos
8.
Rev Endocr Metab Disord ; 23(1): 121-131, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741717

RESUMO

Obesity results from an imbalance in energy homeostasis, whereby excessive energy intake exceeds caloric expenditure. Energy can be dissipated out of an organism by producing heat (thermogenesis), explaining the long-standing interest in exploiting thermogenic processes to counteract obesity. Mitochondrial uncoupling is a process that expends energy by oxidizing nutrients to produce heat, instead of ATP synthesis. Energy can also be dissipated through mechanisms that do not involve mitochondrial uncoupling. Such mechanisms include futile cycles described as metabolic reactions that consume ATP to produce a product from a substrate but then converting the product back into the original substrate, releasing the energy as heat. Energy dissipation driven by cellular ATP demand can be regulated by adjusting the speed and number of futile cycles. Energy consuming futile cycles that are reviewed here are lipolysis/fatty acid re-esterification cycle, creatine/phosphocreatine cycle, and the SERCA-mediated calcium import and export cycle. Their reliance on ATP emphasizes that mitochondrial oxidative function coupled to ATP synthesis, and not just uncoupling, can play a role in thermogenic energy dissipation. Here, we review ATP consuming futile cycles, the evidence for their function in humans, and their potential employment as a strategy to dissipate energy and counteract obesity.


Assuntos
Tecido Adiposo Marrom , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Tecido Adiposo Marrom/metabolismo , Humanos , Obesidade/metabolismo , Ciclização de Substratos , Termogênese
9.
Clin Epigenetics ; 13(1): 202, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732242

RESUMO

Nearly all human complex traits and diseases exhibit some degree of sex differences, with epigenetics being one of the main contributing factors. Various tissues display sex differences in DNA methylation; however, this has not yet been explored in skeletal muscle, despite skeletal muscle being among the tissues with the most transcriptomic sex differences. For the first time, we investigated the effect of sex on autosomal DNA methylation in human skeletal muscle across three independent cohorts (Gene SMART, FUSION, and GSE38291) using a meta-analysis approach, totalling 369 human muscle samples (222 males and 147 females), and integrated this with known sex-biased transcriptomics. We found 10,240 differentially methylated regions (DMRs) at FDR < 0.005, 94% of which were hypomethylated in males, and gene set enrichment analysis revealed that differentially methylated genes were involved in muscle contraction and substrate metabolism. We then investigated biological factors underlying DNA methylation sex differences and found that circulating hormones were not associated with differential methylation at sex-biased DNA methylation loci; however, these sex-specific loci were enriched for binding sites of hormone-related transcription factors (with top TFs including androgen (AR), estrogen (ESR1), and glucocorticoid (NR3C1) receptors). Fibre type proportions were associated with differential methylation across the genome, as well as across 16% of sex-biased DNA methylation loci (FDR < 0.005). Integration of DNA methylomic results with transcriptomic data from the GTEx database and the FUSION cohort revealed 326 autosomal genes that display sex differences at both the epigenome and transcriptome levels. Importantly, transcriptional sex-biased genes were overrepresented among epigenetic sex-biased genes (p value = 4.6e-13), suggesting differential DNA methylation and gene expression between male and female muscle are functionally linked. Finally, we validated expression of three genes with large effect sizes (FOXO3A, ALDH1A1, and GGT7) in the Gene SMART cohort with qPCR. GGT7, involved in antioxidant metabolism, displays male-biased expression as well as lower methylation in males across the three cohorts. In conclusion, we uncovered 8420 genes that exhibit DNA methylation differences between males and females in human skeletal muscle that may modulate mechanisms controlling muscle metabolism and health.


Assuntos
Epigenoma/fisiologia , Perfilação da Expressão Gênica/métodos , Músculo Esquelético/metabolismo , Fatores Sexuais , Ciclização de Substratos/fisiologia , Idoso , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia
10.
PLoS One ; 16(4): e0250830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930059

RESUMO

Activated phosphorylation-dephosphorylation biochemical reaction cycles are a class of enzymatic futile cycles. A futile cycle such as a single MAPK cascade governed by two underlying enzymatic reactions permits Hyperbolic (H), Signal transducing (ST), Threshold-hyperbolic (TH) and Ultrasensitive (U) operating regimes that characterize input-output behaviour. Retroactive signalling caused by load due to sequestration of phosphorylated or unphosphorylated form of the substrate in a single enzymatic cascade without explicit feedback can introduce two-way communication, a feature not possible otherwise. We systematically characterize the operating regimes of a futile cycle subject to retroactivity in either of the substrate forms. We demonstrate that increasing retroactivity strength, which quantifies the downstream load, can trigger five possible regime transitions. Retroactivity strength is a reflection of the fraction of the substrate sequestered by its downstream target. Remarkably, the minimum required retroactivity strength to evidence any sequestration triggered regime transition demands 23% of the substrate bound to its downstream target. This minimum retroactivity strength corresponds to the transition of the dose-response curve from ST to H regime. We show that modulation of the saturation and unsaturation levels of the enzymatic reactions by retroactivity is the fundamental mechanism governing operating regime transition.


Assuntos
Sistema de Sinalização das MAP Quinases , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Retroalimentação Fisiológica , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Fosforilação , Transdução de Sinais , Processos Estocásticos , Ciclização de Substratos
11.
J Immunol ; 206(7): 1436-1442, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33608455

RESUMO

Follicular dendritic cells (FDCs) retain immune complexes (ICs) for prolonged time periods and are important for germinal center (GC) reactions. ICs undergo periodic cycling in FDCs, a mechanism supporting an extended half-life of Ag. Based on experimental data, we estimated that the average residence time of PE-ICs on FDC surface and interior were 21 and 36 min, respectively. GC simulations show that Ag cycling might impact GC dynamics because of redistribution of Ag on the FDC surface and by protecting Ag from degradation. Ag protection and influence on GC dynamics varied with Ag cycling time and total Ag concentration. Simulations predict that blocking Ag cycling terminates the GC reaction and decreases plasma cell production. Considering that cycling of Ag could be a target for the modulation of GC reactions, our findings highlight the importance of understanding the mechanism and regulation of IC cycling in FDCs.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Linfócitos B/imunologia , Células Dendríticas Foliculares/imunologia , Centro Germinativo/imunologia , Modelos Teóricos , Plasmócitos/imunologia , Animais , Antígenos/metabolismo , Diferenciação Celular , Simulação por Computador , Humanos , Ativação Linfocitária , Ciclização de Substratos
12.
J Assist Reprod Genet ; 37(10): 2435-2442, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32803421

RESUMO

PURPOSE: We aimed to define intrauterine insemination (IUI) cycle characteristics associated with viable birth, identify thresholds below which IUI treatments are consistent with very poor prognosis and futile care, and develop a nomogram for individualized application. METHODS: This retrospective cohort study evaluated couples using fresh partner ejaculate for IUI from January 2005 to September 2017. Variables included female age, semen characteristics, and ovarian stimulation type. Using cycle-level data, we evaluated the association of these characteristics with the probability of viable birth by fitting generalized regression models for a binary outcome with a logit link function, using generalized estimating equation methodology to account for the correlation between cycles involving the same patient. RESULTS: The cohort consisted of 1117 women with 2912 IUI cycles; viable birth was achieved in 275 (9.4%) cycles. Futile care (viable birth rate < 1%) was identified for women age > 43, regardless of stimulation type or inseminate motility (IM). Very poor prognosis (viable birth rate < 5%) was identified for women using oral medications or Clomid plus gonadotropins who were (1) age < 35 with IM < 49%, (2) age 35-37 with IM < 56%, or (3) age ≥ 38, and (4) women age ≥ 38 using gonadotropins only with IM < 60%. A clinical prediction model and nomogram was developed with an optimism-corrected c-statistic of 0.611. CONCLUSIONS: The present study highlights the impact of multiple clinical factors on IUI success, identifies criteria consistent with very poor prognosis and futile care, and provides a nomogram to individualize counseling regarding the probability of a viable birth.


Assuntos
Infertilidade Feminina/genética , Inseminação Artificial/métodos , Prognóstico , Ciclização de Substratos/fisiologia , Adulto , Coeficiente de Natalidade , Feminino , Fertilização In Vitro , Gonadotropinas/administração & dosagem , Humanos , Infertilidade Feminina/patologia , Masculino , Indução da Ovulação/métodos , Gravidez , Taxa de Gravidez , Ciclização de Substratos/genética
13.
Bioresour Technol ; 309: 123307, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32315913

RESUMO

The biotransformation of phytosterol to androstenedione (AD) by mycobacteria is a unique process accompanied by energy-producing. However, high intracellular ATP content can severely inhibit the efficient production of AD. In this study, a novel citrate-based ATP futile cycle (AFC) and pyruvate-based AFC were constructed for the first time. Application of AFCs reduced intracellular ATP and propionyl-CoA levels and increased NAD+/NADH ratios and cell viability. The forced consumption of ATP promotes the transcription of critical genes in propionyl-CoA metabolism. The synergistic effect of enhanced propionyl-CoA metabolism and AFC increased AD conversion yield from 60.6% to 97.3%. The AD productivity was further improved by repeated batch fermentation using untreated cane molasses. The maximum productivity was 181% higher than that of the original strain. Therefore, the strategy of combining AFC and repeated batch fermentation is a valuable tool for the efficient and low-cost production of AD and other steroidal pharmaceutical precursors.


Assuntos
Melaço , Mycobacterium , Trifosfato de Adenosina , Androstenodiona , Bengala , Fermentação , Ciclização de Substratos
14.
An Acad Bras Cienc ; 91(1): e20180058, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30994757

RESUMO

Brazil is the world's largest producer of orange and passion fruit, which are destined mainly for industrialization, generating grand volumes of wastes. The solid portion of these residues is a rich source of pectin - composed mainly of galacturonic acid and neutral sugars, which through the hydrolysis process can be used in biological conversion processes, as the production of polyhydroxyalkanoates (PHAs). This way, we characterized these wastes, followed by the extraction and hydrolysis of pectin for employ as a substrate for the cell growth of Cupriavidus necator. The results confirmed the large portion of pectin (almost 40 g.100g-1) and soluble sugars, present in these wastes. The hydrolyzed extract showed as a good source of carbon for the cell growth of C. necator with YX/S 0.56 and 0.44, µMax 0.27 and 0.21 for orange and passion fruit wastes respectively, similar to other carbon sources. This way, the extraction and hydrolysis of orange and passion fruit wastes for the cellular growth of C. necator, can be a good alternative to converting of residues in high value added product.


Assuntos
Citrus sinensis/química , Citrus sinensis/microbiologia , Cupriavidus necator/fisiologia , Passiflora/química , Passiflora/microbiologia , Extratos Vegetais/química , Resíduos Sólidos , Metabolismo dos Carboidratos , Carboidratos/química , Citrus sinensis/metabolismo , Hidrólise , Passiflora/metabolismo , Pectinas/química , Pectinas/metabolismo , Extratos Vegetais/metabolismo , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/metabolismo , Valores de Referência , Ciclização de Substratos
15.
Sci Rep ; 9(1): 4322, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867454

RESUMO

In folate-mediated one-carbon metabolism (FOCM), 5-formyltetrahydrofolate (5fTHF), a one-carbon substituted tetrahydrofolate (THF) vitamer, acts as an intracellular storage form of folate and as an inhibitor of the folate-dependent enzymes phosphoribosylaminoimidazolecarboxamide formyltransferase (AICARFT) and serine hydroxymethyltransferase (SHMT). Cellular levels of 5fTHF are regulated by a futile cycle comprising the enzymes SHMT and 5,10-methenyltetrahydrofolate synthetase (MTHFS). MTHFS is an essential gene in mice; however, the roles of both 5fTHF and MTHFS in mammalian FOCM remain to be fully elucidated. We present an extension of our previously published hybrid-stochastic model of FOCM by including the 5fTHF futile-cycle to explore its effect on the FOCM network. Model simulations indicate that MTHFS plays an essential role in preventing 5fTHF accumulation, which consequently averts inhibition of all other reactions in the metabolic network. Moreover, in silico experiments show that 10-formylTHF inhibition of MTHFS is critical for regulating purine synthesis. Model simulations also provide evidence that 5-methylTHF (and not 5fTHF) is the predominant physiological binder/inhibitor of SHMT. Finally, the model simulations indicate that the 5fTHF futile cycle dampens the stochastic noise in FOCM that results from both folate deficiency and a common variant in the methylenetetrahydrofolate reductase (MTHFR) gene.


Assuntos
Carbono/metabolismo , Ácido Fólico/metabolismo , Leucovorina/metabolismo , Ciclização de Substratos , Tetra-Hidrofolatos/metabolismo , Animais , Simulação por Computador , Humanos , Redes e Vias Metabólicas , Camundongos , Processos Estocásticos
16.
ACS Synth Biol ; 8(4): 787-795, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30856339

RESUMO

Energy metabolism plays an important role in the growth and central metabolic pathways of cells. Manipulating energy metabolism is an efficient strategy to improve the formation of target products and to understand the effects of altering intracellular energy levels on global metabolic networks. Candida glabrata, as a dominant yeast strain for producing pyruvate, principally converts glucose to pyruvate through the glycolytic pathway. However, this process can be severely inhibited by a high intracellular ATP content. Here, in combination with the physiological characteristics of C. glabrata, efforts have been made to construct an ATP futile cycle system (ATP-FCS) in C. glabrata to decrease the intracellular ATP level without destroying F0F1-ATPase function. ATP-FCS was capable of decreasing the intracellular ATP level by 51.0% in C. glabrata. The decrease in the ATP level directly led to an increased pyruvate production and glycolysis efficiency. Moreover, we further optimized different aspects of the ATP-FCS to maximize pyruvate accumulation. Combining ATP-FCS with further genetic optimization strategies, we achieved a final pyruvate titer of 40.2 g/L, with 4.35 g pyruvate/g dry cell weight and a 0.44 g/g substrate conversion rate in 500 mL flasks, which represented increases of 98.5%, 322.3%, and 160%, respectively, compared with the original strain. Thus, these strategies hold great potential for increasing the synthesis of other organic acids in microbes.


Assuntos
Trifosfato de Adenosina/metabolismo , Candida glabrata/metabolismo , Ácido Pirúvico/metabolismo , Ciclização de Substratos/fisiologia , Adenosina Trifosfatases/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Glicólise/fisiologia , Redes e Vias Metabólicas/fisiologia
17.
DNA Repair (Amst) ; 75: 1-17, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30684682

RESUMO

Thymine deprivation in thyA mutant E. coli causes thymineless death (TLD) and is the mode of action of popular antibacterial and anticancer drugs, yet the mechanisms of TLD are still unclear. TLD comprises three defined phases: resistance, rapid exponential death (RED) and survival, with the nature of the resistance phase and of the transition to the RED phase holding key to TLD pathology. We propose that a limited source of endogenous thymine maintains replication forks through the resistance phase. When this source ends, forks undergo futile break-repair cycle during the RED phase, eventually rendering the chromosome non-functional. Two obvious sources of the endogenous thymine are degradation of broken chromosomal DNA and recruitment of thymine from stable RNA. However, mutants that cannot degrade broken chromosomal DNA or lack ribo-thymine, instead of shortening the resistance phase, deepen the RED phase, meaning that only a small fraction of T-starved cells tap into these sources. Interestingly, the substantial chromosomal DNA accumulation during the resistance phase is negated during the RED phase, suggesting futile cycle of incorporation and excision of wrong nucleotides. We tested incorporation of dU or rU, finding some evidence for both, but DNA-dU incorporation accelerates TLD only when intracellular [dUTP] is increased by the dut mutation. In the dut ung mutant, with increased DNA-dU incorporation and no DNA-dU excision, replication is in fact rescued even without dT, but TLD still occurs, suggesting different mechanisms. Finally, we found that continuous DNA synthesis during thymine starvation makes chromosomal DNA increasingly single-stranded, and even the dut ung defect does not completely block this ss-gap accumulation. We propose that instability of single-strand gaps underlies the pathology of thymine starvation.


Assuntos
Dano ao DNA , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Ciclização de Substratos/genética , Timina/metabolismo , DNA de Cadeia Simples/genética , Desoxirribonucleases/metabolismo
18.
PLoS One ; 13(11): e0208048, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30496314

RESUMO

It has previously been shown that pretreatment of differentiated human skeletal muscle cells (myotubes) with eicosapentaenoic acid (EPA) promoted increased uptake of fatty acids and increased triacylglycerol accumulation, compared to pretreatment with oleic acid (OA) and palmitic acid (PA). The aim of the present study was to examine whether EPA could affect substrate cycling in human skeletal muscle cells by altering lipolysis rate of intracellular TAG and re-esterification of fatty acids. Fatty acid metabolism was studied in human myotubes using a mixture of fatty acids, consisting of radiolabelled oleic acid as tracer (14C-OA) together with EPA or PA. Co-incubation of myotubes with EPA increased cell-accumulation and incomplete fatty acid oxidation of 14C-OA compared to co-incubation with PA. Lipid distribution showed higher incorporation of 14C-OA into all cellular lipids after co-incubation with EPA relative to PA, with most markedly increases (3 to 4-fold) for diacylglycerol and triacylglycerol. Further, the increases in cellular lipids after co-incubation with EPA were accompanied by higher lipolysis and fatty acid re-esterification rate. Correspondingly, basal respiration, proton leak and maximal respiration were significantly increased in cells exposed to EPA compared to PA. Microarray and Gene Ontology (GO) enrichment analysis showed that EPA, related to PA, significantly changed i.e. the GO terms "Neutral lipid metabolic process" and "Regulation of lipid storage". Finally, an inhibitor of diacylglycerol acyltransferase 1 decreased the effect of EPA to promote fatty acid accumulation. In conclusion, incubation of human myotubes with EPA, compared to PA, increased processes of fatty acid turnover and oxidation suggesting that EPA may activate futile substrate cycling of fatty acids in human myotubes. Increased TAG-FA cycling may be involved in the potentially favourable effects of long-chain polyunsaturated n-3 fatty acids on skeletal muscle and whole-body energy metabolism.


Assuntos
Ácido Eicosapentaenoico/metabolismo , Músculo Esquelético/efeitos dos fármacos , Triglicerídeos/metabolismo , Adulto , Diacilglicerol O-Aciltransferase , Diglicerídeos , Ácido Eicosapentaenoico/farmacologia , Metabolismo Energético , Ácidos Graxos/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos , Lipólise/efeitos dos fármacos , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Mioblastos , Ácido Oleico/metabolismo , Oxirredução , Ácido Palmítico/metabolismo , Cultura Primária de Células , Ciclização de Substratos
20.
Microbiology (Reading) ; 163(11): 1604-1612, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28982396

RESUMO

In (hyper)thermophilic organisms metabolic processes have to be adapted to function optimally at high temperature. We compared the gluconeogenic conversion of 3-phosphoglycerate via 1,3-bisphosphoglycerate to glyceraldehyde-3-phosphate at 30 °C and at 70 °C. At 30 °C it was possible to produce 1,3-bisphosphoglycerate from 3-phosphoglycerate with phosphoglycerate kinase, but at 70 °C, 1,3-bisphosphoglycerate was dephosphorylated rapidly to 3-phosphoglycerate, effectively turning the phosphoglycerate kinase into a futile cycle. When phosphoglycerate kinase was incubated together with glyceraldehyde 3-phosphate dehydrogenase it was possible to convert 3-phosphoglycerate to glyceraldehyde 3-phosphate, both at 30 °C and at 70 °C, however, at 70 °C only low concentrations of product were observed due to thermal instability of glyceraldehyde 3-phosphate. Thus, thermolabile intermediates challenge central metabolic reactions and require special adaptation strategies for life at high temperature.


Assuntos
Gliceraldeído 3-Fosfato/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Temperatura Alta , Fosfoglicerato Quinase/metabolismo , Sulfolobus solfataricus/enzimologia , Estabilidade Enzimática , Gluconeogênese , Gliceraldeído-3-Fosfato Desidrogenases/química , Ácidos Glicéricos/metabolismo , Meia-Vida , Cinética , Modelos Estatísticos , Fosfoglicerato Quinase/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Ciclização de Substratos/fisiologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...